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Our proposal: Federated Dual Averaging
o Novel server dual averaging procedure
o Theoretical and empirical advantages

(e) Assume all the M clients participate in client updates for every round, namely S, = [M].

(e): full participation (for
simplicity of exposition)

Issue of FedMID: curse of primal averaging

Theorem 4.3. Assuming A1, and in addition assume  S% [IVFn(w) = VF(w)]. < ¢*

server wedomy)

While each client can locate a sparse
solution, simply averaging yields a averaging
dense solution on the server.

Problem definition and Examples

and F is quadratic, then FedDualAvg can output w such that
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Composite 101: ProxGD is the standard algorithm for solving non-federated CO:

Wiyl < pI'OX,mp ('wt — ’I’]VF(’UJt))

— argtrunin {F (wg) + (VF (wy) ,w — wy) + % |w — wt||§ + w('w)}

First-order Taylor expansion of F Smoothness estimation

Composite 201: Mirror descent generalizes ProxGD to general Bregman divergence

Wiy = argmin {F (wi) + (VF (wg) ,w — wy) + Y (w) + %Dh('w, ’wt)}

w
Primal-Dual interpretation of Mirror Descent

o z; = Vh(wy) Forward mirror (Primal -> Dual)
o Vir1 = Z; — 1N - VF(wy) Gradient step (in dual space)
o (Wepq = V(R + n)* (y:11) Backward mirror (Dual -> Primal)

—nVF(w;) —NVE(w)

Forward and backward mirror Backward mirror only

Persistent primal states Persistent dual states

Our main proposal: FedDualAvg

Algorithm 3 Federated Dual Averaging

procedure FEDDUALAVG(wq, e, 7s)
server initialization zy - Vh(wq)
forr=0,...,R—1do
sample a subset of clients S, C [M]
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4 Communication: dual states are
5: on client m € §,. in parallel do
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client initialization 277 < z; aggregated across clients.
for k=0,..., K—1do
ﬁr,k — NsNer K + nck

wy < V(h + 7 k1) * (277%) — Compute primal point

11: Zrktl S Zrk — NeOrk — Client dual update
1
13: Zry1 < Zr + N5y — Server dual update

14: Wr41 — V(b +nsnc(r + 1) KY)* (2r41) — (Optional) primal output

Locally: each client runs dual averaging,
tracking a pair of primal and dual states.

based on (Haxby, 2001). centralized corresponds to training on the centralized dataset gathered from
all the training clients. local corresponds to training on the local data from only one training client without
communication. FEDAVG (9) corresponds to running FEDAVG algorithms with subgradient in lieu of SGD to
handle the non-smooth £;-regularizer. FEDMID is another straightforward extension of FEDAVG running
local proximal gradient method (see Section 3.1 for details). We show that using our proposed algorithm
FEDDUALAVG, one can 1) achieve performance comparable to the centralized baseline without the need to
gather client data, and 2) significantly outperforms the local baseline on the isolated data and the FEDAvG
baseline. See Section 5.3 for details.
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