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Federated Learning
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Notation: 𝑤(,)*
𝑚th client

𝑟th round,
𝑘th local iteration

[Konečnỳ et al., ’15]



FᴇᴅAᴠɢ: the de facto standard of FL
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𝑟th round,
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[Konečnỳ et al., '15]



FᴇᴅAᴠɢ: Generalized Formulation Notation: 𝑤(,)*
𝑚th client

𝑟th round,
𝑘th local iteration[Karimireddy et al., ICML'20, Reddi et al., '20, etc]

Client sampling

Average client deltas (as pseudo anti-gradient)

Server update with server learning rate 𝜂+

Client update



Introducing Federated Composite Optimization (FCO)

Data distribution of the 𝑚th client

● We propose Federated composite optimization (FCO)

○ , where 𝜓) is convex composite functions

● FedAvg (and other existing FL algorithms) solves unconstrained (smooth) problem only

○ , where [e.g., Woodworth et al., NeurIPS'20]



Image source: Wikipedia

● Let 𝜓) 𝑤 be regularizers

Example of 𝜓! : FL with Regularization

Matrix nuclear norm promotes low-rank

● Federated matrix completion for recommendation system

● Federated Lasso for sparsity representations

Potential application: cross-silo distributed biomedical data



● Let 𝜓) 𝑤 be convex indicator 

● Problem becomes

● Budgeting, each customer has a budget constraint

● FL with monotonic constraints

● Inputs welcome!

Example of 𝜓! : FL with (Personalized) Constraints

Fulfill all constraints

Improve interpretability



Mix & Match of Setups

● In this work, we focus on homogeneous 𝜓) ≡ 𝜓 but allowing for heterogeneous 𝐹)

● Client and/or server access to composite oracle 𝜓)
○ Client-side oracle: better convergence? Privacy for personalized constraints?
○ Server-side oracle: computationally light

● Homogeneous vs heterogeneous composite 𝜓)

● Homogeneous vs heterogeneous objective 𝐹): standard “heterogeneity” in FL
[e.g., Li et al., MLSys’20, Karimireddy et al., ICML'20, Woodworth et al., NeurIPS'20]



Composite 101: Proximal Gradient Descent

Image source: [Bubeck, 2015]

Proximal additive

Smoothness estimationFirst-order Taylor expansion of 𝐹

● Proximal Gradient Descent (PGD)

● Consider sequential , where 𝐹 smooth, 𝜓 “simple” and convex

● prox operator can often be computed analytically

Projected GD

Weight decay (variant)

Soft-thresholding



First Attempt: FᴇᴅAᴠɢ + Proximal Gradient Descent



First Attempt: FᴇᴅAᴠɢ + Proximal Gradient Descent

● Challenge: Averaging and proximal operations discord

○ Averaging and (nonlinear) proximal operators do not commute

○ Intuition: Averaging on post-projected points “blunt” the sharpness of projection

Projection

Projection

Average

Average



* indicates convex conjugate

Primal-dual interpretation of MD
○ 𝑧+ = ∇ℎ(𝑤+) Forward mirror (Primal -> Dual)
○ 𝑦+,- = 𝑧+ − 𝜂 . ∇𝐹 𝑤+ Gradient step (in dual space)
○ 𝑤+,- = ∇(ℎ + 𝜂𝜓)∗ 𝑦+,- Backward mirror (Dual -> Primal)

𝑤,

𝑧,
∇ℎ(2)

𝑦,-#
−𝜂∇𝐹(𝑤()

𝑤,-#
∇ ℎ + 𝜂𝜓 ∗(2)

𝑧,-# 𝑦,-$

𝑤,-$ Primal space

Dual space

Arbitrary distance-
generating ℎ

Composite 201: (composite) Mirror Descent

(reduces to PGD if ℎ 𝑤 = !
"
| 𝑤 |" )

[Nemirovski et al., ’83, Duchi et al., COLT’10]



Federated Mirror Descent (FᴇᴅMɪD)

● Federated Mirror Descent (FᴇᴅMɪD) generalizes Federated PGD
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Dual Averaging (a.k.a. Lazy Mirror Descent)

💤Composite 202: Dual Averaging

Backward mirror (Dual -> Primal) – retrieve primal

Gradient step (in dual space)

[Nesterov et al., ’09, Xiao et al., ’10, Flammarion et al., COLT’17]



Mirror Descent vs Dual Averaging
💤
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Dual Averaging

• Forward and backward mirror

• Persistent primal states

• Backward mirror only

• Persistent dual states
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Federated Dual Averaging (FᴇᴅDᴜᴀʟAᴠɢ)



Notation: 𝑤(,)*
𝑚th client

𝑟th round,
𝑘th local iteration

Federated Dual Averaging (FᴇᴅDᴜᴀʟAᴠɢ)

Compute primal point

Client dual update

Server dual update

Average client dual deltas

(Optional) primal output



FᴇᴅMɪD (a.k.a. FᴇᴅPGD) vs FᴇᴅDᴜᴀʟAᴠɢ
💤
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Dual Averaging

• Forward and backward mirror

• Persistent primal updates

• FᴇᴅMɪD: average the primal

• theoretically challenging due to the

nonlinearity of mirror map.

• Backward mirror only

• Persistent dual updates

• FᴇᴅDᴜᴀʟAᴠɢ: average the dual

• Enjoys nice theoretical interpretation via

dual shadow sequence.

• outperforms FᴇᴅMɪD empirically.



Theory: Blanket Assumptions

(a) & (b): standard
regularity assumptions for
composite setup

(c): smoothness of f

(e): full participation (for
simplicity of exposition)

(d): additive bounded
variance



Theorem 1: Small Client Learning Rate 𝜂! Regime

In small 𝜂9 regime, both FᴇᴅMɪD and FᴇᴅDᴜᴀʟAᴠɢ can match minibatch rate

L: smoothness
σ: variance bound
M: # of clients
K: # of local steps
R: # of rounds

Theorem 1. Assuming A1, for sufficiently small 𝜂. , and appropriate 𝜂+ , both FᴇᴅMɪD and
FᴇᴅDᴜᴀʟAᴠɢ can output '𝑤 such that

where 𝐵 ≔ 𝐷/ 𝑤⋆, 𝑤! is the Bregman divergence distance between optimum 𝑤⋆ and initial 𝑤!



Stronger Guarantee for FᴇᴅDᴜᴀʟAᴠɢ (bounded gradient)
We establish (possibly) stronger guarantee for FᴇᴅDᴜᴀʟAᴠɢ with larger 𝜂9 and unit 𝜂: = 1

Theorem 2. Assuming A1, and in addition assume , then for 𝜂1 = 1 and

𝜂. ≤
#
23

, FᴇᴅDᴜᴀʟAᴠɢ can output '𝑤 such that

Moreover for appropriate 𝜂.
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𝐵 ≔ 𝐷# 𝑤⋆, 𝑤%
L: smoothness
σ: variance bound
M: # of clients
K: # of local steps
R: # of rounds

matches [Stich ICLR’19] bound on
smooth unconstrained FᴇᴅAᴠɢ

faster convergence
(usefulness of client step)

Overhead for infrequent
communication



Stronger Guarantee for FᴇᴅDᴜᴀʟAᴠɢ (quadratic 𝐹)

Theorem 3. Assuming A1, and in addition assume

and 𝐹 is quadratic, then FᴇᴅDᴜᴀʟAᴠɢ can output '𝑤 such that

moreover for appropriate 𝜂.

We can relax the bounded gradient assumption if 𝐹 is quadratic, and heterogeneity is bounded.

𝐵 ≔ 𝐷# 𝑤⋆, 𝑤%
L: smoothness
σ: variance bound
M: # of clients
K: # of local steps
R: # of rounds

matches best known bound on
smooth unconstrained FᴇᴅAᴠɢ
[Khaled AISTATS’20,
Woodworth NeurIPS’20 etc]

faster convergence
(usefulness of client step)

Overhead for infrequent communication



Summary of Theoretical Results

● FᴇᴅMɪD & FᴇᴅDᴜᴀʟAᴠɢ, small 𝜂9:

K: # of local steps
R: # of rounds
G: gradient bound
ζ: heterogeneity bound

● FᴇᴅDᴜᴀʟAᴠɢ, larger 𝜂9:

𝐵 ≔ 𝐷# 𝑤⋆, 𝑤%
L: smoothness
σ: variance bound
M: # of clients



Proof Sketch -- FᴇᴅDᴜᴀʟAᴠɢ

Main observation: the averaged dual “almost” does centralized dual averaging

Variance-reduced but biased
stochastic gradient oracle

Step 1: convergence of the averaged dual (a.k.a. perturbed iterate analysis)

Step 2: bound by stability analysis



Experiments

● Platform setup: TensorFlow/Federated & google-research/federated

● We evaluate the following 4 algorithms:

1. Federated Dual Averaging (FᴇᴅDᴜᴀʟAᴠɢ) 

2. Federated Mirror Descent (FᴇᴅMɪD)

3. FᴇᴅDᴜᴀʟAᴠɢ-OSP (only-server-proximal)

4. FᴇᴅMɪD-OSP (only-server-proximal)

potential light computation
but less principled
- for ablation study purpose



FᴇᴅMɪD vs FᴇᴅMɪD-OSP

Proximal 𝜓 skipped
Reduces to 𝑤(,)-#* ← 𝑤(,)* − 𝜂.𝑔(,)* if ℎ = #

$
| ⋅ | $



● Synthetic dataset: 𝑦 = 𝑥;𝑤⋆ + 𝑏⋆ + 𝜀; known sparse ground truth 𝑤∗

(64 clients, 128 samples per client, ground truth density 512/1024)

● Problem:

● Metric: F1-score of the estimated sparsity, precision, recall, density

Experiment 1: Federated Lasso on Synthetic Dataset

For all algorithms, we tune only 𝜂+
and 𝜂, to attain the best F1-score



Experiment 1: Sparser Ground Truth
● Sparser dataset: (64 clients, 128 samples per client, ground truth density 64/1024)

● Even sparser dataset: (64 clients, 128 samples per client, ground truth density 8/1024)



Experiment 1: More Distributed Data

● Even more distributed: (256 clients, 32 samples per client, ground truth density 512/1024)



● Synthetic dataset: 𝑦 = ⟨𝑋,𝑊⋆⟩ + 𝑏⋆ + 𝜀; known low-rank ground truth 𝑊∗

(64 clients, 128 samples per client, ground truth rank 16/32)

● Problem:

● Metric: training loss, validation mse, recovered rank, recovered error (in Frobenius norm)

Experiment 2: Low-Rank Matrix Estimation



Experiment 2: Sparser Ground Truth
● Lower rank dataset: (64 clients, 128 samples per client, ground truth rank 4/32)

● Even lower rank dataset: (64 clients, 128 samples per client, ground truth rank 1/32)



Experiment 2: More Distributed Data

● More distributed: (256 clients, 32 samples per client, ground truth density 512/1024)



Experiment 3: Sparse Logistic Regression for fMRI
● Dataset: fMRI scans on response to binary image recognition

(6 subjects, 11-12 sessions per subject, 18 scans per session, 39,912 voxels)

● Federated Setup: Each client possesses the data of a session. (59 training clients in total)

● Problem: l1-regularized logistic regression

● Metric: density, validation accuracy



Experiment 4: norm-ball constrained FL
● Dataset: Federated EMNIST (10 classes or 62 classes)

● Metric: Training loss, training accuracy, test accuracy

● L1-constrained logistic regression for EMNIST-10



Experiment 4: norm-ball constrained FL

● L2-constrained logistic regression for EMNIST-10



Experiment 4: norm-ball constrained FL

● L1-constrained 2-hidden-layer NN on EMNIST-62



Thank you!

Paper: https://arxiv.org/abs/2011.08474

Email: yuanhl@cs.stanford.edu
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