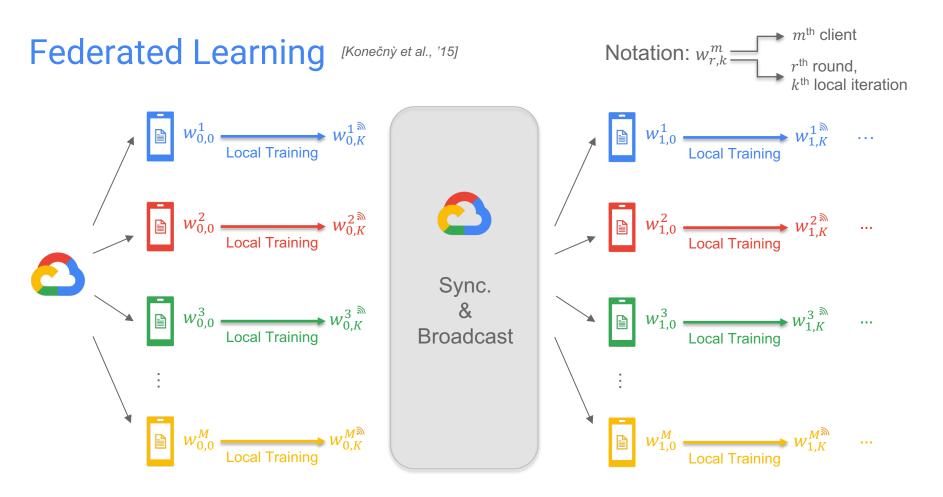


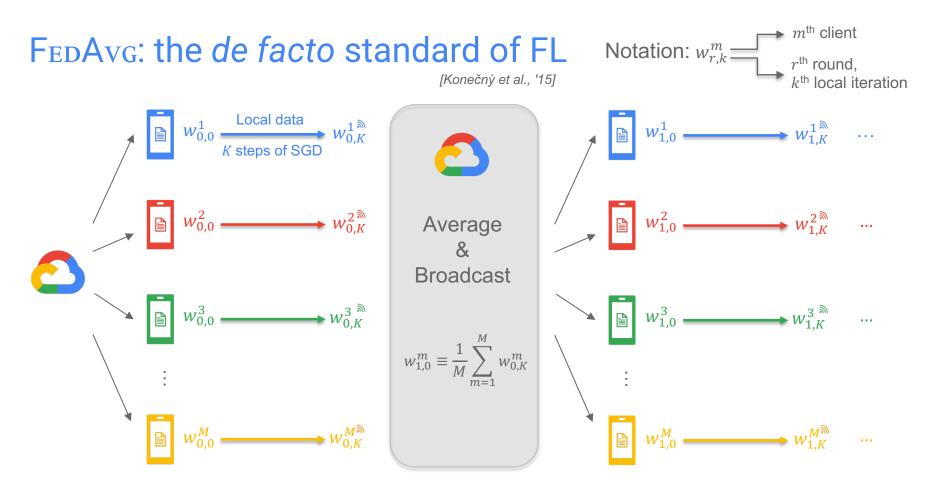
## **Federated Composite Optimization**

(arXiv: 2011.08474)

#### Honglin Yuan, Manzil Zaheer, Sashank Reddi

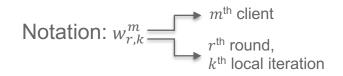
**Thanks to:** Zachary Charles, Zheng Xu, Andrew Hard, Ehsan Amid, Amr Ahmed, Aranyak Mehta, TensorFlow Federated team





## **FEDAVG: Generalized Formulation**

[Karimireddy et al., ICML'20, Reddi et al., '20, etc]



| Algorithm 1 Federated Averaging (FEDAVG)    |                                                                                           |                                                  |  |  |  |
|---------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| 1: procedure FEDAVG $(w_0, \eta_c, \eta_s)$ |                                                                                           |                                                  |  |  |  |
| 2: <b>for</b> $r = 0,, R - 1$ <b>do</b>     |                                                                                           |                                                  |  |  |  |
| 3:                                          | sample a subset of clients $\mathcal{S}_r \subseteq [M]$                                  | Client sampling                                  |  |  |  |
| 4:                                          | on client $m \in \mathcal{S}_r$ in parallel do                                            |                                                  |  |  |  |
| 5:                                          | client initialization $w_{r,0}^m \leftarrow w_r$                                          |                                                  |  |  |  |
| 6:                                          | for $k = 0, \ldots, K - 1$ do                                                             | Client update                                    |  |  |  |
| 7:                                          | $g_{r,k}^m \leftarrow  abla f(w_{r,k}^m; \xi_{r,k}^m)$                                    |                                                  |  |  |  |
| 8:                                          | $w_{r,k+1}^{\acute{m}} \leftarrow w_{r,k}^{m'} - \eta_{	ext{c}} \cdot g_{r,k}^{m}$        |                                                  |  |  |  |
| 9:                                          | $\Delta_r = \frac{1}{ \mathcal{S}_r } \sum_{m \in \mathcal{S}_r} (w_{r,K}^m - w_{r,0}^m)$ | Average client deltas (as pseudo anti-gradient)  |  |  |  |
| 10:                                         | $w_{r+1} \leftarrow w_r + \eta_{\mathrm{s}} \cdot \Delta_r$                               | Server update with server learning rate $\eta_s$ |  |  |  |

#### Introducing Federated Composite Optimization (FCO)

• FedAvg (and other existing FL algorithms) solves **unconstrained** (smooth) problem only

$$o \min_{w \in \mathbb{R}^d} \frac{1}{M} \sum_{m=1}^M F_m(w) \text{, where } F_m(w) := \mathbb{E}_{\xi \sim \mathcal{D}_m}[f(w;\xi)]$$
 [e.g., Woodworth et al., NeurIPS'20]   
Data distribution of the  $m^{\text{th}}$  client

• We propose Federated **composite** optimization (FCO)

$$\circ \quad \min_{w \in \mathbb{R}^d} \Phi(w) \coloneqq rac{1}{M} \sum_{m=1}^M \left[ F_m(w) + \psi_m(w) 
ight]$$
 , where  $\psi_m$  is convex composite functions

#### Example of $\psi_m$ : FL with Regularization

• Let  $\psi_m(w)$  be regularizers

Google

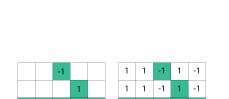
Federated Lasso for sparsity representations

 $\min_{w} \frac{1}{M} \sum_{m=1}^{M} \mathbb{E}_{(x,y)\sim\mathcal{D}_m} \|x^T w - y\|_2^2 + \lambda \|w\|_1$ 

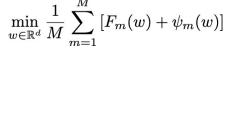
Potential application: cross-silo distributed biomedical data

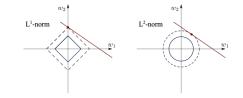
• Federated matrix completion for recommendation system

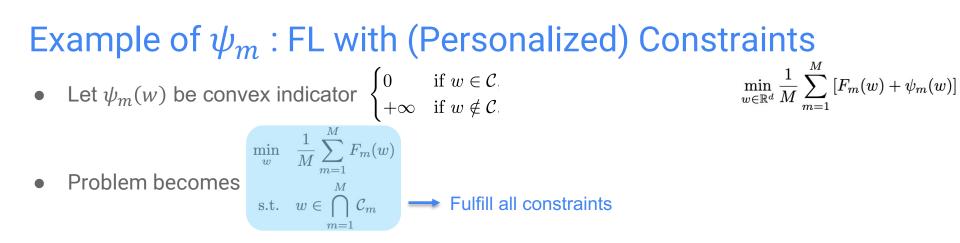
 $\min_{W} \frac{1}{M} \sum_{m=1}^{M} F_m(W) + \lambda \|W\|_* \longrightarrow \text{Matrix nuclear norm promotes low-rank}$ 



1 1 -1 1 -1







- Budgeting, each customer has a budget constraint
- FL with monotonic constraints ---> Improve interpretability
- Inputs welcome!

#### Mix & Match of Setups

$$\min_{w\in\mathbb{R}^d}rac{1}{M}\sum_{m=1}^M \left[F_m(w)+\psi_m(w)
ight]$$

• Homogeneous vs heterogeneous objective  $F_m$ : standard "heterogeneity" in FL

[e.g., Li et al., MLSys'20, Karimireddy et al., ICML'20, Woodworth et al., NeurIPS'20]

- Homogeneous vs heterogeneous composite  $\psi_m$
- **Client** and/or **server** access to composite oracle  $\psi_m$ 
  - Client-side oracle: better convergence? Privacy for personalized constraints?
  - Server-side oracle: computationally light
- In this work, we focus on homogeneous  $\psi_m \equiv \psi$  but allowing for heterogeneous  $F_m$

$$\min_{w\in \mathbb{R}^d} \Phi(w) := rac{1}{M} \sum_{m=1}^M F_m(w) + \psi(w)$$

#### **Composite 101: Proximal Gradient Descent**

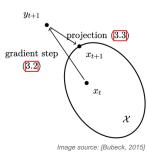
- Consider sequential min  $F(w) + \psi(w)$ , where F smooth,  $\psi$  "simple" and convex
- Proximal Gradient Descent (PGD)

$$w_{t+1} \leftarrow \mathbf{prox}_{\eta\psi} (w_t - \eta \nabla F(w_t))$$

$$:= \underset{w}{\operatorname{argmin}} \left\{ F(w_t) + \langle \nabla F(w_t), w - w_t \rangle + \frac{1}{2\eta} \|w - w_t\|_2^2 + \frac{\psi(w)}{\psi(w)} \right\}$$
First-order Taylor expansion of F Smoothness estimation

• **prox** operator can often be computed analytically

$$\begin{split} \psi(w) &= \chi_{\mathcal{C}}(w) := \begin{cases} 0 & \text{if } w \in \mathcal{C} \\ +\infty & \text{if } w \notin \mathcal{C} \end{cases} & \longrightarrow \textit{Projected GD} \\ \psi(w) &= \frac{1}{2}\lambda \|w\|_2^2 & \longrightarrow \textit{Weight decay (variant)} \end{split}$$



 $\psi(w) = \lambda \|w\|_1$ Google



## First Attempt: FEDAVG + Proximal Gradient Descent



| Algorithm 1 Federated Averaging (FEDAVG)                    |                                                                                          |               |  |  |  |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------|--|--|--|
| 1: procedure FEDAVG $(w_0, \eta_c, \eta_s)$                 |                                                                                          |               |  |  |  |
| 2: <b>for</b> $r = 0,, R - 1$ <b>do</b>                     |                                                                                          |               |  |  |  |
| 3: sample a subset of clients $\mathcal{S}_r \subseteq [M]$ |                                                                                          |               |  |  |  |
| 4:                                                          | on client $m \in \mathcal{S}_r$ in parallel do                                           |               |  |  |  |
| 5:                                                          | client initialization $w_{r,0}^m \leftarrow w_r$                                         |               |  |  |  |
| 6:                                                          | for $k = 0, \ldots, K - 1$ do                                                            |               |  |  |  |
| 7:                                                          | $g_{r,k}^m \leftarrow \nabla f(w_{r,k}^m; \xi_{r,k}^m)$                                  |               |  |  |  |
| 8:                                                          | $w_{r,k+1}^m \leftarrow w_{r,k}^m - \eta_{	ext{c}} \cdot g_{r,k}^m$                      | $\rightarrow$ |  |  |  |
| 9:                                                          | $\Delta_r = rac{1}{ \mathcal{S}_r } \sum_{m \in \mathcal{S}_r} (w_{r,K}^m - w_{r,0}^m)$ |               |  |  |  |
| 10:                                                         | $w_{r+1} \leftarrow w_r + \eta_{	ext{s}} \cdot \Delta_r$                                 | $\rightarrow$ |  |  |  |

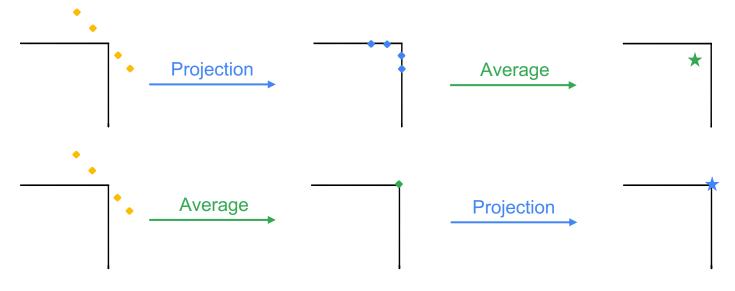
Algorithm 2 Federated PGD 1: procedure FEDPGD $(w_0, \eta_c, \eta_s)$ for r = 0, ..., R - 1 do 2: sample a subset of clients  $\mathcal{S}_r \subseteq [M]$ 3: on client  $m \in S_r$  in parallel do 4: client initialization  $w_{r,0}^m \leftarrow w_r$ 5: for k = 0, ..., K - 1 do 6:  $g_{r,k}^m \leftarrow \nabla f(w_{r,k}^m; \xi_{r,k}^m)$ 7:  $w_{r,k+1}^m \leftarrow \mathbf{prox}_{n,\psi}(w_{r,k}^m - \eta_c g_{r,k}^m)$ 8:  $\Delta_r = \frac{1}{|\mathcal{S}_r|} \sum_{m \in \mathcal{S}_r} (w_{r,K}^m - w_{r,0}^m)$ 9:  $w_{r+1} \leftarrow \mathbf{prox}_{\eta_{s}\eta_{c}K\psi}(w_{r}+\eta_{s}\Delta_{r})$ 10:

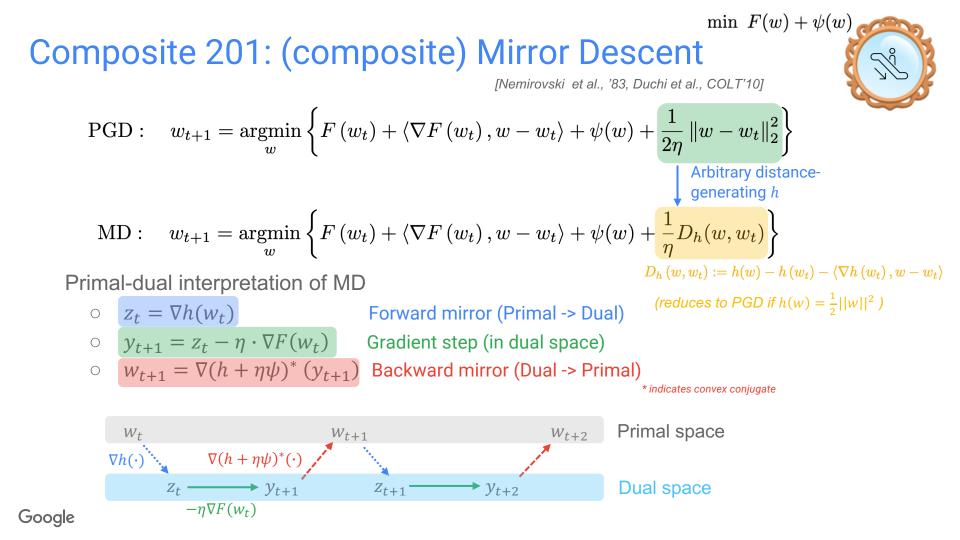
$$\min_{w\in \mathbb{R}^d} \Phi(w) := rac{1}{M} \sum_{m=1}^M F_m(w) + \psi(w)$$

## First Attempt: FEDAVG + Proximal Gradient Descent



- Challenge: Averaging and proximal operations discord
  - Averaging and (nonlinear) proximal operators do not commute
  - Intuition: Averaging on post-projected points "blunt" the sharpness of projection





#### Federated Mirror Descent (FEDMID)

• Federated Mirror Descent (FEDMID) generalizes Federated PGD

| Algor                                       | ithm 2 Federated PGD                                                                                                    | $\overline{\mathbf{Algor}}$ | ithm 2 Federated Mirror Descent (FEDMID)                                                                                    |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1: procedure FEDPGD $(w_0, \eta_c, \eta_s)$ |                                                                                                                         | 1: pr                       | <b>vocedure</b> FEDMID $(w_0, \eta_c, \eta_s)$                                                                              |
| 2: <b>for</b> $r = 0,, R - 1$ <b>do</b>     |                                                                                                                         | 2:                          | for $r = 0, \ldots, R-1$ do                                                                                                 |
| 3:                                          | sample a subset of clients $\mathcal{S}_r \subseteq [M]$                                                                | 3:                          | sample a subset of clients $\mathcal{S}_r \subseteq [M]$                                                                    |
| 4:                                          | on client $m \in \mathcal{S}_r$ in parallel do                                                                          | 4:                          | on client $m \in \mathcal{S}_r$ in parallel do                                                                              |
| 5:                                          | client initialization $w_{r,0}^m \leftarrow w_r$                                                                        | 5:                          | client initialization $w_{r,0}^m \leftarrow w_r$                                                                            |
| 6:                                          | for $k = 0, \ldots, K - 1$ do                                                                                           | 6:                          | for $k = 0, \ldots, K - 1$ do                                                                                               |
| 7:                                          | $g^m_{r,k} \leftarrow  abla f(w^m_{r,k}; \xi^m_{r,k})$                                                                  | 7:                          | $g_{r,k}^m \leftarrow \nabla f(w_{r,k}^m; \xi_{r,k}^m)$                                                                     |
| 8:                                          | $w^{\dot{m}}_{r,k+1} \leftarrow \mathbf{prox}_{\eta_{\mathrm{c}}\psi}( abla h(w^m_{r,k}) - \eta_{\mathrm{c}}g^m_{r,k})$ | <b>&gt;&gt;</b> 8:          | $w_{r,k+1}^m \leftarrow  abla(h+\eta_{	ext{c}}\psi)^*( abla h(w_{r,k}^m) - \eta_{	ext{c}}g_{r,k}^m)$                        |
| 9:                                          | $\Delta_r = rac{1}{ \mathcal{S}_r } \sum_{m \in \mathcal{S}_r} (w^m_{r,K} - w^m_{r,0})$                                | 9:                          | $\Delta_r = rac{1}{ \mathcal{S}_r } \sum_{m \in \mathcal{S}_r} (w^m_{r,K} - w^m_{r,0})$                                    |
| 10:                                         | $w_{r+1} \leftarrow \mathbf{prox}_{\eta_{\mathrm{s}}\eta_{\mathrm{c}}K\psi}( abla h(w_r) + \eta_{\mathrm{s}}\Delta_r)$  | <b>1</b> 0:                 | $w_{r+1} \leftarrow \nabla (h + \eta_{\mathrm{s}} \eta_{\mathrm{c}} K \psi)^* (\nabla h(w_r) + \eta_{\mathrm{s}} \Delta_r)$ |

## Composite 202: Dual Averaging

[Nesterov et al., '09, Xiao et al., '10, Flammarion et al., COLT'17]

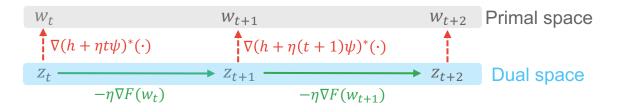
Dual Averaging (a.k.a. Lazy Mirror Descent)

 $w_t = \nabla (h + \eta t \psi)^* (z_t)$ = arg min { \lap - z\_t, w \rangle + \eta t \psi (w) + h(w) \rangle

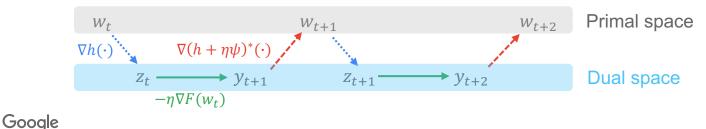
 $z_{t+1} = z_t - \eta \cdot \nabla F(w_t)$ 

Backward mirror (Dual -> Primal) - retrieve primal

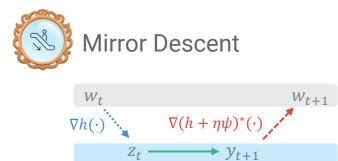
Gradient step (in dual space)



Recall MD:

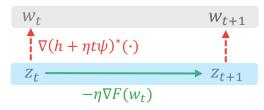


#### **Mirror Descent vs Dual Averaging**

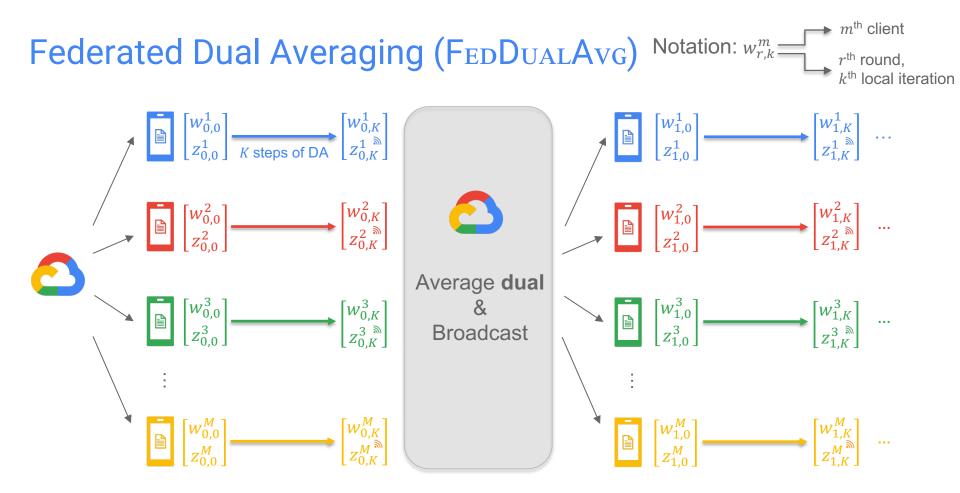


- $-\eta \nabla F(w_t)$
- Forward **and** backward mirror
- Persistent **primal** states





- Backward mirror only
- Persistent **dual** states



# Federated Dual Averaging (FeDDUALAVG) Notation: $w_{r,k}^m \xrightarrow{m^{th} client} r^{th} round, k^{th} local iteration$

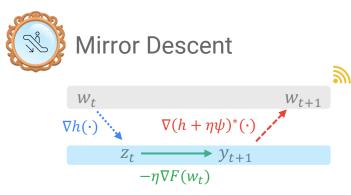
Algorithm 3 Federated Dual Averaging

1: procedure FEDDUALAVG $(w_0, \eta_c, \eta_s)$ server initialization  $z_0 \leftarrow \nabla h(w_0)$ 2: for r = 0, ..., R - 1 do 3: sample a subset of clients  $\mathcal{S}_r \subseteq |M|$ 4: on client  $m \in S_r$  in parallel do 5: client initialization  $z_{r,0}^m \leftarrow z_r$ 6: for k = 0, ..., K - 1 do 7:  $\tilde{\eta}_{r,k} \leftarrow \eta_{\rm s} \eta_{\rm c} r K + \eta_{\rm c} k$ 8:  $w_{r,k}^m \leftarrow \nabla (h + \tilde{\eta}_{r,k} \psi)^* (z_{r,k}^m)$ 9:  $g_{rk}^m \leftarrow \nabla f(w_{rk}^m; \xi_{rk}^m)$ 10:  $z_{r,k+1}^m \leftarrow z_{r,k}^m - \eta_{\rm c} g_{r,k}^m$ 11:  $\Delta_r = \frac{1}{|\mathcal{S}_r|} \sum_{m \in \mathcal{S}_r} (z_{r,K}^m - z_{r,0}^m)$ 12: $z_{r+1} \leftarrow z_r + \eta_s \Delta_r$ 13: $w_{r+1} \leftarrow \nabla (h + \eta_{\rm s} \eta_{\rm c}(r+1) K \psi)^*(z_{r+1})$ 14:Gou

- ---- Compute primal point
- Client **dual** update

- → (Optional) primal output

## FedMiD (a.k.a. FedPGD) vs FedDualAvg

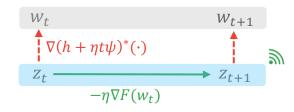


- Forward and backward mirror
- Persistent primal updates
- FedMID: average the **primal**

Google

• theoretically challenging due to the **nonlinearity of mirror map**.





- Backward mirror only
- Persistent dual updates
- FedDualAvg: average the **dual**
- Enjoys nice theoretical interpretation via dual shadow sequence.
- outperforms FEDMID empirically.

#### **Theory: Blanket Assumptions**

$$\min_{w \in \mathbb{R}^d} \quad \Phi(w) := \frac{1}{M} \sum_{m=1}^M F_m(w) + \psi(w)$$
  
where  $F_m(w) := \mathbb{E}_{\xi \sim \mathcal{D}_m}[f(w;\xi)]$ 

Assumption 1. Let  $\|\cdot\|$  be an arbitrary norm and  $\|\cdot\|_*$  be its dual norm.

- (a)  $\psi : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$  is a closed convex function with closed dom  $\psi$ . Assume  $\Phi(w) = F(w) + \psi(w)$  attains a finite optimum at  $\theta^* \in \operatorname{dom} \psi$ .
- (b)  $h : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$  is a Legendre function that is 1-strongly convex with respect to  $\|\cdot\|$ . Assume  $\operatorname{dom} h \supset \operatorname{dom} \psi$ .
- (c)  $f(\cdot,\xi): \mathbb{R}^d \to \mathbb{R}$  is a closed convex function that is differentiable on dom  $\psi$  for any fixed  $\xi$ . In addition,  $f(\cdot,\xi)$  is L-smooth on dom  $\psi$ , namely for any  $u, w \in \operatorname{dom} \psi$ ,

$$f(u;\xi) \le f(w;\xi) + \langle \nabla f(w;\xi), u - w \rangle + \frac{1}{2}L ||u - w||^2.$$

(d)  $\nabla f$  has  $\sigma^2$ -bounded variance under  $\|\cdot\|_*$  norm within dom  $\psi$ , namely for any  $w \in \operatorname{dom} \psi$ ,

$$\mathbb{E}_{\xi \sim \mathcal{D}_m} \left\| \nabla f(w,\xi) - \nabla F_m(w) \right\|_*^2 \le \sigma^2.$$

(e) Assume all the M clients participate in client updates for every round, namely  $S_r = [M]$ .

(a) & (b): standard regularity assumptions for composite setup

(c): smoothness of f

(d): additive bounded variance

(e): full participation (for simplicity of exposition)

#### Theorem 1: Small Client Learning Rate $\eta_c$ Regime

In small  $\eta_c$  regime, both FedMID and FedDUALAVG can match minibatch rate

**Theorem 1.** Assuming A1, for **sufficiently small**  $\eta_c$ , and appropriate  $\eta_s$ , both FedMID and FedDualAvg can output  $\hat{w}$  such that

$$\mathbb{E}\left[\Phi(\hat{w})\right] - \Phi(w^{\star}) \lesssim \frac{LB}{R} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}}$$

where  $B \coloneqq D_h(w^*, w_0)$  is the Bregman divergence distance between optimum  $w^*$  and initial  $w_0$ 

L: smoothness o: variance bound M: # of clients K: # of local steps R: # of rounds

## Stronger Guarantee for FEDDUALAVG (bounded gradient)

We establish (possibly) stronger guarantee for **FEDDUALAVG** with larger  $\eta_c$  and unit  $\eta_s = 1$ 

**Theorem 2.** Assuming A1, and in addition assume  $\sup \|\nabla f(w,\xi)\|_* \leq G$ , then for  $\eta_s = 1$  and  $w \in \mathbf{dom}\psi$  $\eta_c \leq \frac{1}{4I}$ , FedDualAvg can output  $\hat{w}$  such that  $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{B}{\eta_{\rm c} K R} + \frac{\eta_{\rm c} \sigma^2}{M} + \eta_{\rm c}^2 L K^2 G^2$   $\frac{0}{\eta_{\rm c} K R} = 0$   $\frac{1}{\eta_{\rm c} K R} + \frac{\eta_{\rm c} \sigma^2}{M} + \frac{\eta_{\rm$ Moreover for appropriate  $\eta_c$ communication (usefulness of client step)  $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}G^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$  $B \coloneqq D_h(w^*, w_0)$ matches [Stich ICLR'19] bound on L: smoothness  $\sigma$ : variance bound smooth unconstrained FedAvg M: # of clients K: # of local steps Google R: # of rounds

## Stronger Guarantee for FEDDUALAVG (quadratic F)

We can relax the bounded gradient assumption if F is quadratic, and heterogeneity is bounded.

**Theorem 3.** Assuming A1, and in addition assume  $\sup_{w \in \mathbf{dom}\psi} \|\nabla F_m(w) - \nabla F(w)\|_* \leq \zeta^2$ and *F* is quadratic, then FedDualAvg can output  $\widehat{w}$  such that

$$\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{B}{\eta_{\rm c} K R} + \frac{\eta_{\rm c} \sigma^2}{M} + \eta_{\rm c}^2 L K \sigma^2 + \eta_{\rm c}^2 L K^2 \zeta^2,$$

 $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$   $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$   $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$   $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$   $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi(w^{\star}) \lesssim \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$   $\mathbb{E}\left[\Phi\left(\hat{w}\right)\right] - \Phi\left(\hat{w}\right) = \frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}.$ 

matches best known bound on <u>smooth unconstrained</u> FEDAvg [Khaled AISTATS'20, Woodworth NeurIPS'20 etc] L: smoothness o: variance bound M: # of clients K: # of local steps R: # of rounds

## **Summary of Theoretical Results**

• FedMiD & FedDualAvg, small  $\eta_c$ :

• FedDualAvg, larger  $\eta_c$ :

$$\frac{LB}{R} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}}$$

$$\frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}G^{\frac{2}{3}}}{R^{\frac{2}{3}}}$$

$$\frac{LB}{KR} + \frac{\sigma B^{\frac{1}{2}}}{M^{\frac{1}{2}}K^{\frac{1}{2}}R^{\frac{1}{2}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\sigma^{\frac{2}{3}}}{K^{\frac{1}{3}}R^{\frac{2}{3}}} + \frac{L^{\frac{1}{3}}B^{\frac{2}{3}}\zeta^{\frac{2}{3}}}{R^{\frac{2}{3}}}$$

 $\begin{array}{ll} B \coloneqq D_h(w^*,w_0) & \textit{K: \# of local steps} \\ L: \ \text{smoothness} & \textit{R: \# of rounds} \\ \sigma: \ \text{variance bound} & \textit{G: gradient bound} \\ M: \ \# \ of \ clients & \ \zeta: \ heterogeneity \ bound \end{array}$ 

#### Proof Sketch -- FEDDUALAVG

**Main observation**: the averaged dual  $\overline{z_{r,k}} := \frac{1}{M} \sum_{m=1}^{M} z_{r,k}^m$  "almost" does **centralized dual averaging**  $\overline{z_{r,k+1}} = \overline{z_{r,k}} - \eta_c \cdot \frac{1}{M} \sum_{m=1}^{M} \nabla f(w_{r,k}^m; \xi_{r,k}^m) \quad \underbrace{\text{Variance-reduced but biased}}_{\text{stochastic gradient oracle}}$ 

Step 1: convergence of the averaged dual (a.k.a. perturbed iterate analysis)

$$\mathbb{E}\left[\Phi\left(\frac{1}{KR}\sum_{r=0}^{R-1}\sum_{k=1}^{K}\nabla\left(h+\tilde{\eta}_{r,k}\psi\right)^{*}(\overline{z_{r,k}})\right)\right] - \Phi(w^{*}) \leq \underbrace{\frac{B}{\eta_{c}KR} + \frac{\eta_{c}\sigma^{2}}{M}}_{\substack{Rate \ if \ synchronize \\ every \ iterations}} + \underbrace{\frac{L}{MKR}\left[\sum_{r=0}^{R-1}\sum_{k=0}^{K-1}\sum_{m=1}^{M}\mathbb{E}\left\|\overline{z_{r,k}} - z_{r,k}^{m}\right\|_{*}^{2}\right]}_{Discrepancy \ overhead}}$$

**Step 2:** bound  $\mathbb{E} \|\overline{z_{r,k}} - z_{r,k}^m\|_*^2$  by stability analysis

#### **Experiments**

• Platform setup: TensorFlow/Federated & google-research/federated

- We evaluate the following 4 algorithms:
  - 1. Federated Dual Averaging (FedDualAvg)
  - 2. Federated Mirror Descent (FEDMID)
  - 3. FedDualAvg-OSP (only-server-proximal)
  - 4. FedMID-OSP (only-server-proximal)

potential light computation but less principled - for ablation study purpose

#### FedMiD vs FedMiD-OSP

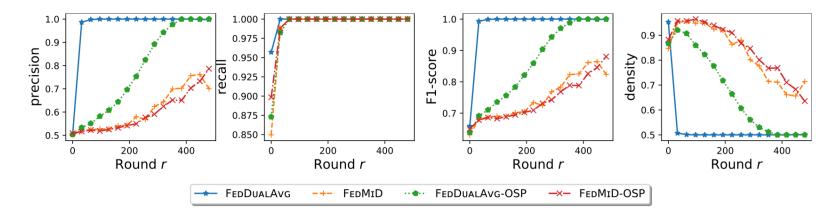
| Algori                                                      | thm 2 Federated Mirror Descent (FEDMID)                                                                            | Algorithm 4 Federated Mirror Descent Only Server                                                                 |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 1: <b>pr</b>                                                | <b>ocedure</b> FEDMID $(w_0, \eta_c, \eta_s)$                                                                      | 1: procedure FEDMID-OSP $(w_0, \eta_c, \eta_s)$                                                                  |
| 2: for $r = 0,, R - 1$ do                                   |                                                                                                                    | 2: for $r = 0, \ldots, R-1$ do                                                                                   |
| 3: sample a subset of clients $\mathcal{S}_r \subseteq [M]$ |                                                                                                                    | 3: sample a subset of clients $\mathcal{S}_r \subseteq [M]$                                                      |
| 4:                                                          | on client $m \in \mathcal{S}_r$ in parallel do                                                                     | 4: on client $m \in \mathcal{S}_r$ in parallel do                                                                |
| 5:                                                          | client initialization $w_{r,0}^m \leftarrow w_r$                                                                   | 5: client initialization $w_{r,0}^m \leftarrow w_r$                                                              |
| 6:                                                          | for $k = 0, \ldots, K - 1$ do                                                                                      | 6: <b>for</b> $k = 0,, K - 1$ <b>do</b>                                                                          |
| 7:                                                          | $g_{r,k}^m \leftarrow  abla f(w_{r,k}^m; \xi_{r,k}^m)$                                                             | 7: $g_{r,k}^m \leftarrow \nabla f(w_{r,k}^m; \xi_{r,k}^m)$                                                       |
| 8:                                                          | $w_{r,k+1}^m \leftarrow \nabla (h + \eta_{\mathrm{c}} \psi)^* (\nabla h(w_{r,k}^m) - \eta_{\mathrm{c}} g_{r,k}^m)$ |                                                                                                                  |
| 9:                                                          | $\Delta_r = rac{1}{ \mathcal{S}_r } \sum_{m \in \mathcal{S}_r} (w^m_{r,K} - w^m_{r,0})$                           | 9: $\Delta_r = rac{1}{ \mathcal{S}_r } \sum_{m \in \mathcal{S}_r} (w^m_{r,K} - w^m_{r,0})$                      |
| 10:                                                         | $w_{r+1} \leftarrow  abla(h+\eta_{ m s}\eta_{ m c}K\psi)^*( abla h(w_r)+\eta_{ m s}\Delta_r)$                      | 10: $w_{r+1} \leftarrow \nabla (h + \eta_{\rm s} \eta_{\rm c} K \psi)^* (\nabla h(w_r) + \eta_{\rm s} \Delta_r)$ |
|                                                             |                                                                                                                    |                                                                                                                  |
|                                                             |                                                                                                                    | Proximal ψ skipped                                                                                               |
|                                                             |                                                                                                                    | Reduces to $w_{r,k+1}^m \leftarrow w_{r,k}^m - \eta_c g_{r,k}^m$ if $h = \frac{1}{2}   \cdot  ^2$                |

#### **Experiment 1: Federated Lasso on Synthetic Dataset**

• Synthetic dataset:  $y = x^T w^* + b^* + \varepsilon$ ; known sparse ground truth  $w^*$ 

(64 clients, 128 samples per client, ground truth density 512/1024)

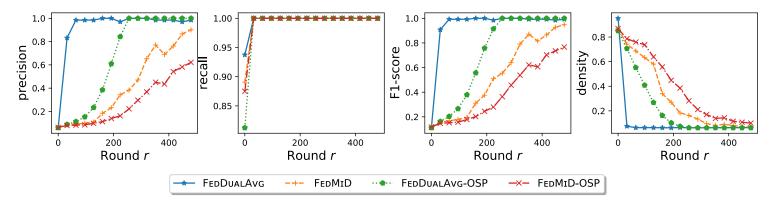
- **Problem:**  $\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \quad \frac{1}{M} \sum_{m=1}^M \mathbb{E}_{(x,y) \sim \mathcal{D}_m} (x^\top w + b y)_2^2 + \lambda \|w\|_1$
- Metric: F1-score of the estimated sparsity, precision, recall, density



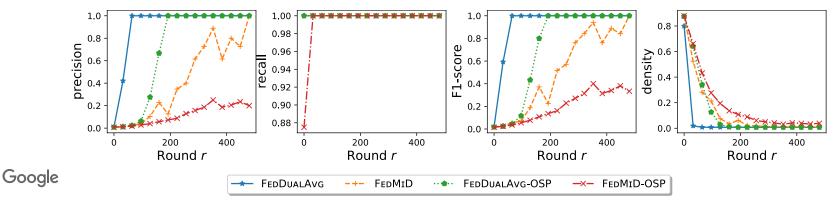
For all algorithms, we tune only  $\eta_s$  and  $\eta_c$  to attain the best F1-score

#### **Experiment 1: Sparser Ground Truth**

• **Sparser dataset:** (64 clients, 128 samples per client, ground truth density **64**/1024)

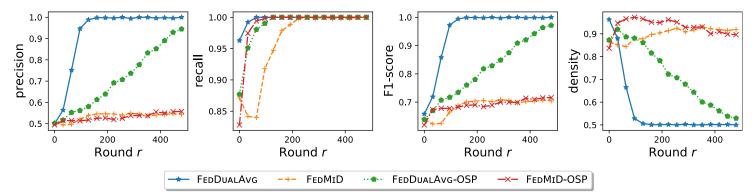


• Even sparser dataset: (64 clients, 128 samples per client, ground truth density 8/1024)



#### **Experiment 1: More Distributed Data**

• Even more distributed: (256 clients, 32 samples per client, ground truth density 512/1024)

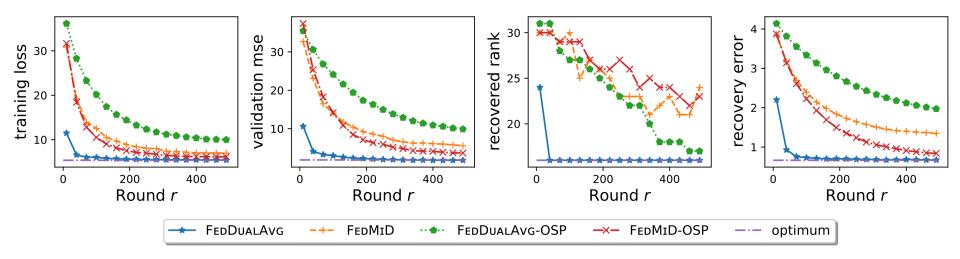


#### **Experiment 2: Low-Rank Matrix Estimation**

• Synthetic dataset:  $y = \langle X, W^* \rangle + b^* + \varepsilon$ ; known low-rank ground truth  $W^*$ 

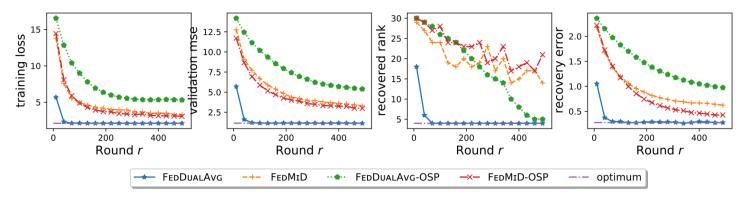
(64 clients, 128 samples per client, ground truth rank 16/32)

- **Problem:**  $\min_{W \in \mathbb{R}^{d_1 \times d_2}, b \in \mathbb{R}} \frac{1}{M} \sum_{m=1}^M \mathbb{E}_{(X,y) \sim \mathcal{D}_m} \left( \langle X, W \rangle + b y \right)^2 + \lambda \|W\|_{\text{nuc}}$
- Metric: training loss, validation mse, recovered rank, recovered error (in Frobenius norm)

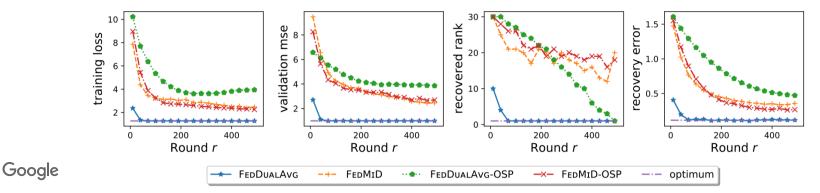


#### **Experiment 2: Sparser Ground Truth**

• Lower rank dataset: (64 clients, 128 samples per client, ground truth rank 4/32)



• Even lower rank dataset: (64 clients, 128 samples per client, ground truth rank 1/32)



#### **Experiment 2: More Distributed Data**

• More distributed: (256 clients, 32 samples per client, ground truth density 512/1024)

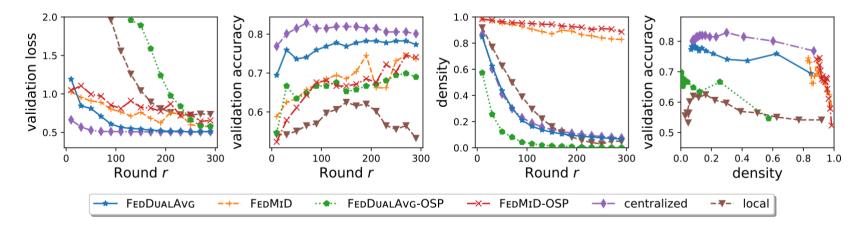


#### **Experiment 3: Sparse Logistic Regression for fMRI**

• **Dataset**: fMRI scans on response to binary image recognition

(6 subjects, 11-12 sessions per subject, 18 scans per session, 39,912 voxels)

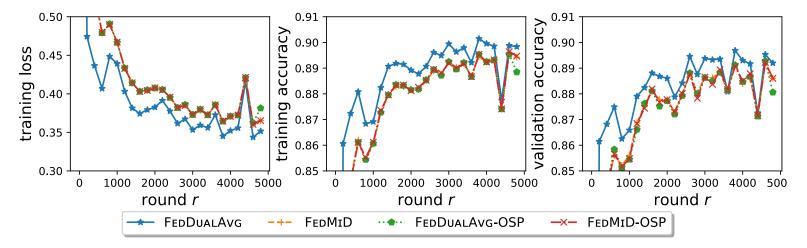
- Federated Setup: Each client possesses the data of a session. (59 training clients in total)
- Problem: I1-regularized logistic regression
- Metric: density, validation accuracy



#### Experiment 4: norm-ball constrained FL

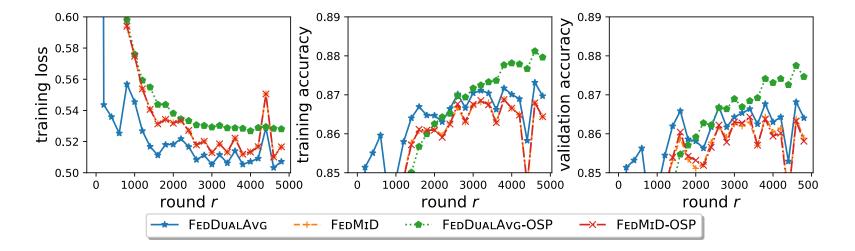
- Dataset: Federated EMNIST (10 classes or 62 classes)
- Metric: Training loss, training accuracy, test accuracy

• L1-constrained logistic regression for EMNIST-10



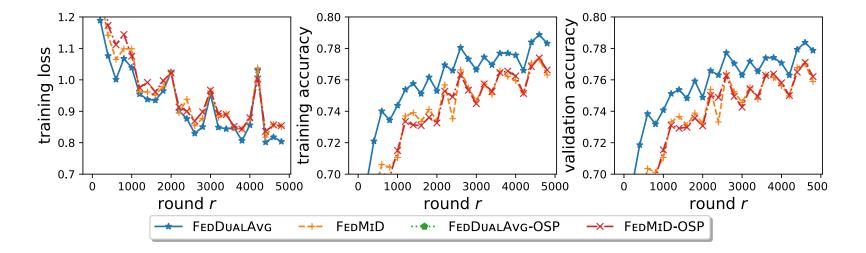
#### Experiment 4: norm-ball constrained FL

• L2-constrained logistic regression for EMNIST-10



#### Experiment 4: norm-ball constrained FL

• L1-constrained 2-hidden-layer NN on EMNIST-62



## Thank you!

## Paper: https://arxiv.org/abs/2011.08474

## Email: yuanhl@cs.stanford.edu